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Double boundary layers in oscillatory viscous flow 
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(Received 10 July 1965) 

This paper is concerned with unsteady laminar boundary layers on solid bodies 
in the presence of a fluctuating external flow of small amplitude. Any containing 
enclosures are assumed to be at  infinity. Compressibility is ignored and conditions 
are given under which this and other approximations are valid. Special attention 
is focussed on the phenomenon of the formation of a steady-streaming flow, 
induced by the Reynolds stresses in the oscillatory boundary layer: it is shown 
that, if the characteristic Reynolds number of the steady streaming is large, 
there is an outer boundary layer within which the steady-streaming velocity 
decays to zero. The thickness of this outer layer is large compared with that of the 
inner (oscillatory) layer, but small compared with a typical dimension of the body. 

The partial differential equation for the flow in the outer layer is solved in a 
typical case by a generalization of a series-expansion method due to Fettis. 
Similarity solutions of the equation are also described. 

The theory is applied specifically to the case of flow generated by a circular 
cylinder oscillating along a diameter in an infinite fluid. Qualitative agreement 
is obtained with experiments performed by Schlichting. 

1. Introduction 
Problems of oscillatory fluid motion often occur in situations where solid 

boundaries are present. Because of the effect of viscosity, boundary layers are 
formed at  such solid boundaries, and as a result of the unsteadiness they are of a 
rather complex kind. Some examples of such flows are discussed in this paper, 
for cases in which the imposed external flow has zero mean. 

Compressibility is ignored. The requirements for this approximation have 
been discussed and stated very clearly by Lighthill (1963, pp. 11-13). Here we 
quote the two main requirements in isothermal situations: (i) the Mach number 
must be small compared with unity; and (ii) the wavelength of sound (associated 
with any given frequency) must be large compared with a typical dimension of 
the system. If U is a typical speed, d a typical length, w a typical frequency and 
c the speed of sound, the requirements may be written 

(i) U/c < 1 and (ii) wd/c < 1. (1.1) 

These conditions are met in many experiments involving water waves or 
oscillating bodies in liquids. Later we shall consider, as a special example, the 
flow due to a circular cylinder which is oscillating along a diameter. Although 
this flow is an example of a radiation problem, with sound waves being radiated 
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to infinity, such effects are negligible compared with other effects, provided the 
wave length of the sound generated (c/w) is large compared with the cylinder 
diameter d. Such was the case in experiments to which reference will be made. 
These and other conditions necessary for the validity of this theory are described 
at the end of $ 2 .  

The object of this paper is twofold: first, to expose some ambiguities in, and to 
provide a more satisfactory physical and mathematical model of, the phenomenon 
of ‘steady streaming’ in oscillatory flows; and secondly to extend Fettis’s (1956) 
series method of solving some non-linear ordinary differential equations, to the 
case of certain partial differential equations. In order to provide a focus, attention 
will be concentrated later on the oscillating-cylinder problem mentioned above; 
however, the basic physical and mathematical ideas apply in many other 
situations, for example, in the context of water waves above a solid surface 
(Longuet-Higgins 1953, 1960). Some of the author’s ideas on the subject are 
summarized elsewhere (Stuart 1963), while related ideas for the torsionally 
oscillating disk problem have been discussed by Rosenblat (1959) and, more 
recently, by Benney (1964); the latter problem is discussed in Appendix 2. 

2. General analysis 
Let us consider a two-dimensional flow bounded by a solid surface, with 

co-ordinates fixed in the surface; as usual in laminar-boundary-layer theory, 
surface curvature will be neglected, but this approximation receives some 
attention at  the end of this section. Let x denote the co-ordinate parallel to the 
wall, x the co-ordinate normal to it, and u , ~  the corresponding velocity com- 
ponents. In  addition, let t denote time, p pressure, p density, Y kinematic 
viscosity, and U(x ,  t )  the external-flow velocity. 

Defining a stream function $ by 

u = a $ p z ,  w = -a$px, (2.1) 

we may write the boundary-layer equation in the form 

a2$ a+ 22+ a$22$ au au a3+ 
= -+u-++--. (2.2) azat ax axax ax a22 at ax a23 

U(x ,  t )  = +?&(x) ( e i w l +  e - i w l ) .  

We wish to confine our attention to functions U ( x ,  t )  of the form 

(2.3) 

It can be argued (cf. Schlichting 1932) that the oscillatory boundary layer on the 
wall will have a thickness of order (v/w)* owing to the diffusion of vorticity with 
period 2nlw. If we now write 

U ( x ,  t )  = u, V(5, T ) ,  x = t d ,  2 = 7(2v/w)&, }, (2.4) $ = (2Y/@)* urn X ( t ,  %J,T), t = T I W ,  v,(4 = u, V,(t). a = U,/wd 

where d is a characteristic length and U, a characteristic speed, equation (2.2) 
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A solution may be developed in powers of a, for small values of this parameter. 
The implications of this are considered a t  the end of this section. 

Bearing in mind that 
V ( [ , 7 )  = +V,(() (eir + eciT), ( 2 . 6 )  

( 2 . 7 )  

we may develop a solution for x in the form 

x = +V,(C) [ ~ ~ ( r l ) e ~ ~ + X ~ ( y ) e - ~ ~ ] + a [ ~ ~ ( ~ , ~ ~ )  + ~ ( ~ 2 e 2 i T + ~ 2 e - - 2 i r ) ] + O ( ~ 2 ) .  

The boundary conditions that we wish to impose are 

( 2 . 8 )  1 xo = dxo /dy  = xs = axslay = x 2  = ax2/ar = o at 7 = 0, 

dxo/dy  .+ 1, axSlav .+ 0, a x 2 l a ~  --f 0 as 7 -+ 00, 

with appropriate initial conditions. Substitution of (2.7) into ( 2 . 5 )  and solution 
of the equation for the terms independent of a yields 

ax 0 / a  7 -  - 1 - e-W+i)r/, x 0 -  - - $( 1 - i) [I - e-(l+i)r/] + 7. ( 2 . 9 )  

The terms of order a obtained from (2.5) and ( 2 . 7 )  yield equations for xs and x2.  
For the latter the boundary conditions ( 2 . 8 )  can be satisfied and no difficulty 
arises. However, in the case of xs, it is found to be impossible to satisfy the 
condition axslay -+ 0 as y -+ 00, if the usual conditions of zero velocity are imposed 
at  the wall. The reason for this can be seen, as follows, from the differential 
equation for xs: 

(2.10) 

Since the complementary function is ( A  +By + Cy2), where A ,  B and C are 
functions of c)  it would be necessary to put two arbitrary functions, B and C, equal 
to zero if the conditions ax,/aq -+ 0,y --f co, were to be satisfied; it would then not 
be possible to satisfy both the boundary conditions at  the wall. Consequently, 
within the framework of this theory the condition at  infinity is relaxed to ‘ axslay 
remains finite when y -+ GO’; this implies C = 0. 

The solution for xs with this altered boundary condition is found to be 

x’=V,--a + ie-27 + 2e-7 sin y + ie-7 cos y - &qe-?(cos y - sin y)}, 
dfl 
dV x s = Od( -O{U 8 - 3 411 - Le-27 8 - 3e-v 2 cos y - e-r/ sin y - $7 e-r/ sin y}. 

When y-+  GO the steady velocity components take the forms 

3 dUo 
40 O dx 

3 d  13 2u 4 
40dz(  ‘z)( 6 ( o ) ) ‘  

us- -- u- ,  

W,--- u-  2-- - 

(2.12) 

(2.13) 

This steady motion is produced by the Reynolds stresses associated with the 
oscillatory viscous flow. 

Having obtained (2.12), which shows that us+ 0 at the edge of the boundary 
layer, which we shall now call the ‘inner layer ’, we now ask if there are some 
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omitted (non-linear) terms which, through their omission, have brought about 
this result. A dimensional analysis is now undertaken as an initial step in our 
understanding of the difficulty. From (2.12) a characteristic velocity is U2,lwd; 
then with a characteristic length d ,  we can form the Reynolds number 

R, = UZ,/mv, (2.14) 

and this parameter is clearly of importance in determining just how us decays to 
zero with distance from the wall. Schlichting (1932) argued that, for small values 
of R,, the flow outside the inner layer is governed by the linearized Navier- 
Stokes equations of slow motion; the boundary conditions on u and w at  the wall 
are that u = us (2.12) and that w, = 0 (although, as (2.13) implies, it is non-zero 
but of very small order, (v/wd2)+ times us). The boundary condition at  infinity is 
that u shall tend to zero. 

The assumption of small values of Rs is implicit in Rayleigh’s (1883) paper, and 
his work and Schlichting’s have been discussed by Stuart (1963). With reference 
to his own experiments, which entailed Rs of order 300, Schlichting mentioned 
the deficiency of the theoretical approach valid for small values of Rs; but he did 
not treat large values. On the other hand, Longuet-Higgins (1953, pp. 546,547, 
565) suggested that, for large values of R,, the steady flow outside the inner layer 
can be calculated by the theory of inviscid rotational flow; but that suggestion 
seems physically inconsistent with the boundary conditions (tangential velocity, 
u = us, given at  the outer edge of the inner layer). Longuet-Higgins did mention, 
however, that an inviscid rotational solution would not always be possible; 
moreover (1960) he discussed the relevance of a diffusive layer, of thickness 
(vt)*, for the non-oscillatory flow. 

Here we argue that, when R, is large, there is a second boundary layer (the 
‘outer’ layer) within which the steady flow, which is ‘driven’ by the velocity 
(2.12), tends to zero. Since a typical velocity is U%/wd, and a typical length is d, 
the thickness of the outer (laminar) layer must have magnitude d(wv)g/Um. This 
is much larger than the thickness (v/w)*, of the inner layer, because a < 1. 

Let us consider the mechanics of the flow in the outer layer on the assumption 
(which is discussed in Appendix 1 and has been justified by Riley (1965) to  the 
present approximation) that the steady flow does not interact with the co-existent 
oscillatory potential flow. We define 

x = Ed, = Cd(wv)+/um, II., = um(v/u)‘ + ( E ,  C),  (2.15) 

and substitute in (A 6) of Appendix 1 to obtain 

(2.16) 

with boundary conditions 

&$/a<= X ( 0 ,  = 0 a t  a g =  0 ;  a$/ag+o as g+m, (2.17) 

where X(E) = -%(dV,/dE). (2.18) 

An appropriate initial condition will be introduced as required. 
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We now discuss (2.17) in the light of the condition a < 1.  Since the outer layer 
has thickness O(a-l) times that of the inner layer, the first condition (2.17), which 
matches the steady tangential velocities in the inner and outer layers, may be 
applied at  5 = 0. Moreover, since, from (2.13) and (2.15), w in the outer layer is 
typically O(a-l) times w in the inner layer, we may set the former equal to zero 
at 5 = 0; this yields the second condition (2.17). 

It will be recognized that, in the discussion so far given, we have derived what 
may be regarded as the dominant equations in an ‘inner-outer ’ expansion 
scheme. In  an analysis of that type we would not automatically equate to zero 
the coefficient C of the complementary function of (2.10); this was emphasized 
to the author by Dr N. Riley, who has shown that, to the order of the present 
work, the constant C must be zero (Riley 1965). In justification of the present, 
more pragmatic approach, we suggest that, since the neglected terms of (2.10) 
are important only towards the edge of the inner layer, little effect of those terms 
can be expected near the wall. Consequently we expect Schlichting’s solution 
(2.11) to be valid near the wall with, as a corollary, C = O(aP), p > 0; thus we set 
C = 0 for our present purposes, which is that of obtaining the main effects for 
a <  1. 

We note, however, that if we wished to account for high-order terms in the 
expansion (2.7), the present arguments would not be valid: the method of inner 
and outer expansions (as in Riley’s work) or the method of two scales, as in the 
work of Benney (1964), might then be used. 

It may be helpful to note that we can consider a single model equation which 
includes both inner and outer layers for xs, namely 

(2.19) 
with conditions 

axs/ar = xS = 0 (7 = 0 ) ;  axsp7 -+ 0 (7 .+ 03). (2.20) 

If we let a -+ 0 with 7 and xs fixed, we obtain (2.10), but this procedure is not 
uniformly valid. In  order to obtain (2.16) for the outer layer we first define 

xs = 2-+a-l4(C,{), ’I = 2-+a-15, (2.21) 

and then let a -+ 0 with 4, 5 fixed. The terms proportional to V, dV,/d( disappear 
because, compared with the other terms as a ratio, they are of a form, namely 

a-3 exp ( - ka-lc), 

which tends to zero as a -+ 0. We may expect the inner and outer layers to merge 
in the way shown in figure 1, with the maximum value of us at the edge of the 
inner layer. 

The transformation (2.21) with a --f 0, as applied to (2.19), indicates in part 
why the applied pressure field, which is included in the V,dV,/dC terms of (2.19), 
does not affect the equation for the outer layer. Within the framework of 
customary boundary-layer theory, no modification of the pressure field is 
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possible; pressure changes can he calculated only by considering interactions 
with the external (invistid) flow. 

The conditions under which we may expect validity of the analysis, which leads 
to (2.16) and (2.17), are the following: 

(i) U,/c < 1 (small Mach number). 
(ii) wd/c < 1 (sound waves unimportant). 
(iii) a = Urn/& < 1 (small amplitude of oscillation, so that (2.7) converges 

(iv) p = v,/wd2 < 1 (boundary-layer approximation for inner layer). 
(v) R, = U2,/wv 9 1 (boundary-layer approximation for outer layer). 

quickly). 

I I 

% 5 
FIGURE 1. Inner and outer layers. 

(vi) Other solid or free boundaries are supposed to be remote from the region 
where the boundary layer is being considered, so that appropriate boundary 
conditions may be supposed applied at  infinity. This condition implies that any 
steady streaming motion developed is unaffected by other boundary regions (for 
example, by a large diameter container). 

(vii) We have hypothesized that the steady Aow within the outer layer is not 
significantly affected by the simultaneous presence of the potential flow; the 
meaning of this hypothesis is made explicit in Appendix 1,  where the justification 
given by Riley (1965), who used an ‘inner-outer ’ expansion, is discussed. 

(viii) Attention has been restricted to laminar flow. This presumably requires 
some restrictions on the above parameters, but in the light of present knowledge 
it is difficult to be very precise. We note, however, that the local Reynolds number 
is likely to be important; for both the inner and outer layers this number, based 
on local reference velocities and boundary-layer thicknesses, is Ri. Suitably 
small values of this parameter would probably be conducive to laminar flow 
(from knowledge of results of stability theory of steady flows, one anticipates 
that this criterion can be consistent with that of R, large). 

In view of the fact that we have used boundary-layer theory (2 .2) ,  some 
discussion of this theory is desirable with reference to conditions (iii), (iv) and (v). 
If  there is no surface curvature the (viscous) terms neglected in (3.2) are of order 
p; but if surface curvature of order d is present the neglected (viscous) terms are 
of order p* times those retained. The latter case is the more usual; moreover since 



Double boundary layers in oscillatory viscous $ow 679 

R, = a2//3, it can be seen that, if R, is very large, a must be large compared with 
b4. Consequently, if R, is large, we may feel justified in neglecting terms O(P4) 
and in using boundary-layer theory, followed by expansion of the solution of 
( 2 . 2 )  in powers of a-at least to some power of a dependent on the size of €2,. 

If, on the other hand, R, is O( 1) can we justify Schlichting’s use of boundary- 
layer theory for the inner layer, followed by slow-motion theory for the steady 
flow in the outer region T In such cases the neglected term O(@) is comparable in 
magnitude with the O(a)  terms of the expansion (2.7) of (2.2). Such a procedure 
can, however, be justified as follows, at least to O(a) in ( 2 . 7 ) ,  this being the order 
to which Schlichting took the expansion. The point is that the 0(/3*) and O(a) 
terms represent different physical effects: the first gives a viscous correction to 
the fundamental oscillation (frequency o), while the second represents non- 
linear generation of both a harmonic ( 2 w )  and of a steady-streaming motion. 
If we calculate the 0(/3*) correction to the fundamental, equation (2.10) indicates 
that a steady-streaming correction O(a@) will follow. The latter is small com- 
pared with the O(a)  steady streaming. But, if it is desired to calculate higher- 
order terms when R,is O( l), caution is required, because the O(c@) term may be as 
important as the term O(a2); if this is the case, equation (2.2) is not valid at this 
order. We emphasize, however, that this problem does not arise when R,9 is large, 
as in this paper. 

A comment on boundary-layer separation is also desirable; condition (iii) 
ensures that this will not arise. We can justify this by reference to the case of a 
circular cylinder moving with speed U,coswt along a diameter d ;  then the 
potential flow relative to the body is of the form (2-3). If the body were accelerated 
uniformly from rest (Watson 1955; Stuart 1963, p. 374)’ separation would occur 
only after the body had traversed a distance O(0.3d); on the other hand, for the 
actual motion the body is accelerating (albeit non-uniformly) from rest for a 
distance U,/w. If UJw is very small compared with 0.3d the flow cannot allow 
separation. This condition is equivalent to (iii). 

3. Solution for the outer layer 
In  this section we shall solve equation (2.16) in series, subject to the boundary 

conditions (2.17). The method we shall adopt is one which has been devised by 
Fettis (1956) for the solution of the ordinary differential equations for rotating- 
disk and rotating-fluid flows. Here it is shown that a similar method can be used 
for the partial differential equation (2.16). The method may be regarded either as 
a formal expansion scheme, in which a ‘small ’ parameter e is first introduced and 
then (hopefully, for practical convergence) set equal to unity, or as an iterative 
scheme (as emphasized by Watson 1965). It is also worthy of mention that 
Pettis’s method is remarkably easy to apply when the boundary layer accurately 
has a behaviour like e-kz, where k is a constant or a function of x, as =. + CO, for 
then the analysis involves only elementary operations on exponential functions 
of this kind. 

We rewrite the boundary conditions as 

aqwc = ex(!$-), @ = 0 (< = 0); a4/ac+ 0 (C+m), (3.1) 
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and expand the solution of (2.16) in the form 

The quantity B is a parameter, which later we shall set equal to unity; y(f;) is a 
function off; to be determined and gives the form of$ as g tends to infinity. In  the 
following analysis primes denote derivatives with respect to g in the q5 functions, 
derivatives with respect to being denoted by suffixes. Derivatives of y(() are 
denoted by primes. The boundary conditions on the functions q31, $,, etc., are 

<= o)l} (3.3) 
4; = X @ ,  = 0 ( ~ = 2 , 3 , 4  ,..., 

#,, #;-to (m=1,2,3,4 ,..., <-+a). 

The condition q5 = 0, 6 = 0 ,  is applied finally and determines y(f;). It can be seen 
that, if the series (3.2) converges (in practice) as far as B = 1, we have a valid 
solution to our problem. 

Substituting (3.2) in (2.16) we obtain the following from the terms linear in B 

9: +y’#; = 0. (3.4) 

The solution subject to the boundary conditions is 

4; = X ey’c, = - (Xly‘) e-fc. 13.5) 

A comment in favour of the Fettis method is noted here: from (3.2), (3.4), (3.5) 
and later formulae we see that it gives the correct exponential behaviour at  
infinity, whereas many other series methods do not. 

The equations arising from the terms proportional to 19, e3, s4, e5 are 

(3.11) 1 
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The solutions of these equations, subject to the boundary conditions, are 

Higher-order terms may be calculated in a similar way. 
If now we set 8 = 1 and satisfy the boundary condition q5 = 0 at 5 = 0, we obtain 

the following ordinary differential equation 

+ ($4 + BE3 + &$4)/y’2 + ( h 2  +im3 + &m4 + &++j)/~’~ + . . . = 0. (3.16) 

This formula represents the condition that the entrainment into the outer layer 
equals the mass flow in the (x)-direction. It is hoped that, for a given function X ,  
a solution for y can be obtained to good accuracy by including only a few terms 
in the series. We shall not discuss boundary conditions on (3.16), since we are 
concerned below only with a special series solution. 

In  general we cannot expect to solve (3.16) in closed form. Let us consider 
physical situations with a degree of symmetry such that X([) can be expanded 
in the form 

X(5)  = a2&1 +,d2<2+,d464+. . . )  (3.17) 

near 5 = 0, where a is supposed to be positive. On substitution in (3.16) we find 
a solution for y, subject to y(0) = 0, as 

Especially we note that, for X ( [ )  = a25 exactly, (3.51, (3.17) and (3.18) yield 

q5 = at( 1 - e-ac), (3.19) 

which is an exact solution of (2.16) and (2.17). (The higher-order terms, (3.12) to 
(3.15), are zero in this case.) 

Solutions for more general power expansions than (3.17) could be calculated, 
but we shall consider only forms of (3.17) in this paper. 

Finally, we note that ‘similarity’ solutions of (2.16), in which it reduces to an 
ordinary differential equation, are available and are described in Appendix 2. 

4. The outer layer on an oscillating circular cylinder 
The prototype problem studied by Schlichting (1932) was that of a circular 

cylinder oscillating along a diameter in a fluid at  rest. In  this case the charac- 
teristic length d is the diameter of the cylinder, and we have 

(4.1) U,(x) = ZU, sin 25 = Urn G(C), 
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when axes are fixed in the cylinder. Prom (2.18) we obtain 

X(() = - 3 sin 4(. (4.2) 

With ( = 0, .$n denoting the extremities of the diameter along which the cylinder 
oscillates (figure 2 ) ,  we shall be concerned with the region in < 6 < an. The 
steady flow is symmetrical about ( = in. 

. 
A2 

FIGURE 2. Outer layer and steady flow due to an oscillating circular cylinder. 

Expanding X ( c )  in the form (3.17) but with ( replaced by (,, namely 

X ( 5 )  = 1 2 ~ , - 3 2 ~ f + + ~ ( : -  ..., (4.3) 

where (1 = c-  in, (4-4) 

we obtain the following from (3.18) 

together with 
l-$W+--- 229,056 g+ ...). 

223,397 

The stream function q5 is given by (3.2) with 8 = 1, (3.5), (3.10) to (3.15), (4.5) 
and (4.6), and is valid to order tf. 

The displacement thickness of the outer layer is defined by 

In  the case of the oscillating circular cylinder this leads to 

s 10 -- - u” (3” - [l+y3;+4+...],  
rn 

(4.7) 

where o = 3-92794 approximately. (Formula (4.8) agrees exactly, to the signi- 
ficant figures given, with an independent calculation, due to Riley (1965), by 
another method.) The solution described above shows that (figure 2 )  fluid is 
dragged steadily in the directions A ,  to B, and B2 and A ,  to B, and B,. Fluid 
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moves in radially to balance this. However, it seems unlikely that the series 
solution converges as far as B, and B,(f, = fan) .  Equation (4.6) suggests 
f ,  = Q as a possible practical limit of convergence. 

At the points Bl and B,, the outer boundary layers from the two sides impact, 
and the details of the solution in this region are unknown. [A similar feature 
arises in the case of flow due to a rotating sphere, and for discussions of the 
impacting boundary layers in this case the reader is referred to Howarth (1951) 
and to Stewartson (1958).] After impact the outer-layer fluid moves in the 
direction B, D, and B, D,; at large distances from the cylinder, and in the absence 
of other boundaries nearby it is plausible to conjecture that the flow tends to  the 
two-dimensional (Bickley) jet solution of the Navier-Stokes equation, since at  
such distances the main effect of the cylinder’s movement is to provide a source 
of momentum for the flow. (This suggestion is somewhat analogous to Stewart- 
son’s, namely, that in the rotating-sphere case the flow takes on the form of a 
radial jet far from the equator of the sphere.) Outside of the outer layer, and of 
the consequent jet, the steady flow is expected to be relatively slight. 

Experiments on the flow due to an oscillating circular cylinder have been 
carried out by Andrade (1931) in air and by Schlichting (1932) in water. In  the 
former experiments R, was of order 0.5 to 1.0, whereas it was of order 250 in those 
of Schlichting; for this reason we concentrate on the latter experiments. 

With a cylinder diameter of 8 cm, w = 3.1 sec-1, an amplitude of oscillation, 
s = U,/w, of 0-9cm, c = 1.42 x 105cm.sec-l, and u = 0-0117cm2sec-l, as in 
Schlichting’s (1932) experiments, we obtain the following values for the basic 
parameters of 3 2: 

(i) U,/c = 2 x 
(ii) wd/c = 1.7 x 
(iii) a = 0.11. 
(iv) = 0.5 x 

(vi) Additionally we note that the bounding water tank had dimensions 
340cm by 55cm, and was 44cm deep filled with water. The fluid motion was 
rendered visible by particles of tin foil on the free water surface. 

We may conclude from the values of the parameters (i) to (v) that the experi- 
ments fall within the purview of this theory, though a = 0.11 is rather large;, 
but since, from (2.8), the modification to a given steady or harmonic component 
is of order a2, even this value of a is reasonable. On the other hand the experi- 
mental conditions noted in (vi) suggest that the steady flow observed by 
Schlichting was affected both by the side walls and by the presence of a free 
surface. Qualitatively, however, the theory is in accordance with experiment, 
in that a steady flow is predicted to be directed away from the cylinder in the 
direction of oscillation. 

(v) Rs = 250. 

5. Concluding remarks 
The conditions under which the present theory is valid have been given in 

detail at  the end of Q 2 and considered in relation to a particular experiment in 
3 4, If U,, w and d are characteristic velocity, frequency and length, and if c is 
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the sound speed and v is the kinematic viscosity, the following are required to be 
small : 

Conditions (i) to (v) UJc, wd/c, U,/wd, v/wd2, wv/U%.  (5.1) 

In  addition, condition (vi), we have assumed that other solid boundaries are a t  
infinity. If there are such boundaries present, at  some typical distance D, we may 
expect the effect on the steady streaming to occur through a parameter 

which represents the ratio of the square of the thickness of the outer layer to D2. 
If this parameter is large or of order 1 then the outer boundaries will be very 
important, but if it is small such boundaries will have little effect on the streaming. 

In  the form given in this paper, the double-layer theory of steady streaming has 
been applied to standing wave motions in incompressible flow. The application of 
similar ideas would be of great interest for compressible flow, as when sound 
waves are incident upon an obstacle, and for travelling wave motions, as when 
a water wave travels over a body of liquid with finite depth and rigid bottom 
(Hunt & Johns 1963; Longuet-Higgins 1953, 1960). In  problems of the latter 
type it is usually important to include effects of bounding free or solid surfaces. 

The author is indebted to M. B. Glauert, R. E. Kelly, M. S. Longuet-Higgins, 
N. Riley, S. Rosenblat, L. A. Segel and J. Watson for especially helpful and con- 
structive suggestions on the work described in this paper, which was done as part 
of a research programme and is published by permission of the Director of the 
National Physical Laboratory. 
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Appendix 1 
The neglect of the interaction between the potential $ow and the 

steadyJlow in the outer layer 
In  the boundary-layer equation (2.2) we write 

+- = +-O(x, t )  +zU(x,  t )  + +-a(x, 2, t ) ,  (A 1) 

where ($o + x U )  is the periodic potential flow (including a displacement effect) 
and frU is an additional flow, of which we are especially interested in the steady 
part. Since boundary-layer theory is assumed to be valid, the potential flow 
balances the given pressure gradient: thus (2.2) becomes 

We average (A 2 )  with respect to time and denote the average of +-, by $5, writing 

II., = +-s++-t, 

where is the time-dependent part of +-a. 

where an overbar denotes an average with respect to time. 
In  the problem discussed in this paper +s, being generated by an 'imposed' 

tangential velocity condition at  the inner edge of the outer layer, is taken to be 
the dominant part of +-,. With U of order U, and of order U%/wd,  as given 
by (2.12), an expansion suggests that a$Jaz has order U3,/w2d2. Consequently, 
typical terms of J may be of the same order as the explicit non-linear terms in 
(A 3). We assume, however, that any part of $t, with the same phase as $Q or U ,  
only yields terms in J of smaller order than the explicit (self-interaction) non- 
linear terms of (A 3). Typically this implies the assumption 
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With this crucial (non-interaction) hypothesis we have 

In fact Riley (1965) has now shown by an 'inner-outer ' expansion, which gives 
the forms of $s and $f, that J E 0 to first order because U ( x ,  t )  and the dominant 
part of $t differ in phase by in; Riley has thus given final mathematical justifica- 
tion to (A 6) as the governing equation for the dominant part of $s. 

Appendix 2 
Similarity solutions, together with a discussion of the problem 

of a torsionally-oscillating disk 

We note those cases in which (2.16), subject to (2.17), reduces to an ordinary 
differential equation. To this end we write 

where a prime denotes an appropriate derivative and a and p are constants. An 
exhaustive discussion of (A S), on the lines of that given by Jones & Watson (1963, 
$V, 21), would be inappropriate here, but we note particularly the following 
possibilities : 

where A ,  CL and to are constants, with 

(i) X = A(C-&)", k = A-J(t-&)J('-a), (A 9) 

(ii) 

where A and c are constants, with 

g" + c(+gg"" - 9'2) = 0. (A 12) 

Equation (A 12) is a limiting form, as a -+ 03, of (A 10). 
The boundary conditions for (AS), (A 10) and (A 12) are 

g"(0) = 1, g(0) = 0, g'(o0) = 0. (A 13) 

As a matter of interest, it may be noted that Mr J. Watson has given simple 
proofs that (A 10) and (A 12), subject to (A 13) have no solutions for a 6 - 1 and 
c < 0. 

A simple solution of (A 10) and (A 13) for a = 1 is 

g = 1 - e--A, (A 14) 

which is equivalent to (3.19). Another simple solution occurs for a = - $, for 
which (A 10) and (A 13) yield 

g = 6"21-e--A~(3))/(l+e-h"('3)). (A 15) 
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Solutions for other values of ct or c may be obtained by the method of $3, with an 
expansion like (3.2): but y is a constant and #n is a function of h only. A relation 
analogous to (3.16) then determines y and completes the solution. The method is 
used on another problem in the next paragraph. 

A similarity solution of a corresponding three-dimensional problem has 
already been discussed by Rosenblat (1959)’ in connexion with the torsional 
oscillations of an infinite disk. The similarity there is of a different kind, the 
radial and azimuthal velocity components each being proportional to a product 
of the radius and a function of the distance normal to the disk. However, the 
analysis leads to a differential equation for the outer layer of the form (A 8), and 
it is conveniently discussed here. In Rosenblat’s paper a function f(7) is given 
by his equation (57): but with the exponential term neglected and when subjected 
to a simple transformation 7 = 6 4216, f = q ,,/2/4e, that equation yields the 
following equation for the outer layer 

(A 16) 

q = O ,  q ’ = 1 ,  6 = 0 ;  q ‘ + O  as <+m. (A 17) 

q”’ + 2qq“ - 4’2 = 0’ 

The Fettis method yields 

(A18) 
where y must be chosen to satisfy q(0) = 0. 

If terms O(y-1) are retained we obtain y = 0.707; to O ( Y - ~ )  we have y = 0.746; 
and to O(y-5) we have y = 0.751. This value agrees with Benney’s (1964) 
calculation. 


